
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

Android ransomware trends and case studies: A reverse Android ransomware trends and case studies: A reverse

engineering approach engineering approach

Chenliang Xu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Xu, Chenliang, "Android ransomware trends and case studies: A reverse engineering approach" (2019).
Graduate Theses and Dissertations. 17810.
https://lib.dr.iastate.edu/etd/17810

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F17810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17810?utm_source=lib.dr.iastate.edu%2Fetd%2F17810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Android ransomware trends and case studies: A reverse engineering approach

by

Chenliang Xu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Yong Guan, Major Professor

Daji, Qiao
Jaeyoun Kim

The student author, whose presentation of the scholarship herein was approved by the
program of study committee, is solely responsible for the content of this thesis. The
Graduate College will ensure this thesis is globally accessible and will not permit

alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright © Chenliang Xu, 2019. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

Page
LIST OF FIGURES .. iii
LIST OF TABLES .. iv
ACKNOWLEDGMENTS ... v
ABSTRACT .. vi
CHAPTER 1. INTRODUCTION .. 1
CHAPTER 2. RELATED WORKS ... 4

Android Defender ... 4
Simplocker .. 4
WannaCry ... 5

CHAPTER 3. TAXONOMY ... 7
Types of Android Ransomware .. 7
Trend of Android Ransomware ... 7
Techniques of Lock-screen Ransomware ... 8
Unlocking Techniques .. 9
Password Generate Techniques .. 10

CHAPTER 4. CASE ANALYSIS ... 11
A. SB Modifier .. 11
B. Red Wars .. 14
C. King of Glory - Beta ... 18

CHAPTER 5. DISCUSSION ... 28
CHAPTER 6. GENERAL SOLUTIONS AND PREVENTIONS .. 30

General Solutions .. 30
Preventions .. 31

CHAPTER 7. UNPACKING ... 32
Introduction to Packing ... 32
Case Study: DrizzleDumper .. 35
Case Study: Dex2oatHunter .. 37
VirtualXposed + FDex2 .. 38

CHAPTER 8. RECOVERY ... 42
General Steps .. 42
Experiment .. 43
Conclusion .. 45

CHAPTER 9. SUMMARY AND FUTURE WORK .. 46
REFERENCES .. 47

www.manaraa.com

iii

LIST OF FIGURES

Figure 1. Android ransomware chronology ... 8
Figure 2. void d() function .. 12
Figure 3. ijm-x86.so ... 13
Figure 4. void onCreate() ... 13
Figure 5. Red Wars classes .. 15
Figure 6. CharSequence and onDisableRequested() .. 15
Figure 7. class raw ... 16
Figure 8. pin.txt .. 16
Figure 9. String getsss() ... 17
Figure 10. Base64 Encoding .. 17
Figure 11. Taking Sub-sequence .. 17
Figure 12. Personal Encryption Algorithm .. 18
Figure 13. Base64 Encoding .. 18
Figure 14. King of Glory - Beta, WannaCry Page ... 20
Figure 15. Classes of King of Glory - Beta ... 21
Figure 16. Control Flow Graph of decryptFile() ... 23
Figure 17. Part of decryptFile() ... 24
Figure 18. Part of jj() ... 25
Figure 19. Part of onCreate() ... 26
Figure 20. Part of onClick() ... 27
Figure 21. Packing Process .. 32
Figure 22. Packed App ... 33
Figure 23. Shell Apk Process ... 34

www.manaraa.com

iv

LIST OF TABLES

Table 1.1 Smart Device OS Market Share……………………………………………………………. 2

www.manaraa.com

v

ACKNOWLEDGMENTS

I would like to thank my committee chair, Guan Yong, and my committee

members, Daji Qiao, and Jaeyoun Kim, for their guidance and support throughout the

course of this research.

In addition, I would also like to thank my friends, colleagues, the department

faculty and staff for making my time at Iowa State University a wonderful experience. I

want to also offer my appreciation to those who were willing to participate in my surveys

and observations, without whom, this thesis would not have been possible.

Acknowledgments

www.manaraa.com

vi

ABSTRACT

With the rapid development of science and technology, the mobile device is

becoming more and more powerful. However, technology is a two-edged sword, mobile

devices also bring security risks. Malware or ransomware is not just for PC, but also a big

threat to mobile device security. Because of these malicious applications, the user’s

mobile device may be locked, files may be encrypted, and even personal information can

be exposed in danger. Therefore, more researches and analysis on currently popular

ransomware are necessary. This paper is going to conclude the taxonomy of Android

ransomware in terms of the types of trend of Android ransomware, the locking/unlocking

techniques, and the password-generate techniques of Android ransomware. We also

performed both statistic and dynamic analysis on three typical Android applications that

carry ransomware, using reverse engineering approach. Furthermore, since there are a

great number of ransomware that we found are packed by third-party packer companies,

this paper will include two separate chapters talking about a few approaches on

unpacking and recovery, to support our security experiments. Lastly, in order to support

some dynamic experiments in our team, this paper is going to contribute a general

approach with a simple example showing how to recover an unpacked app to make it run

as normal.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Ransomware is one type of malware that intrudes the system using the malicious

code, it can encrypt critical files, threaten users and request money for decryption, and give

monetary damage to users (En.wikipedia.org, 2019) (Song, Kim and Lee, 2016). It was

widely spread mainly on PC and website in the last decade. With the rapid growth of mobile

device market such as smartphone, tablet, smart watch, the target of ransomware has been

extended to the mobile device in the recent years. As Table. 1 shows, Android has taken

85.0% of Smartphone OS Market Share in 2017 Q1 (IDC: The premier global market

intelligence company, 2019). The reason that Android OS is such popular can include (1)

Global partnerships and large installed base; (2) Powerful development framework; (3) Open

market for distributing apps (Yang, 2015). Being a popular OS also expose itself in danger,

according to a mobile threat report, there is an estimate 75 % increase in Android mobile

malware encounter rates in the United States compared to 2013 (Lookout.com, 2019).

According to ESET LiveGrid, the number of Android ransomware detections has grown in

year on year comparisons by more than 50%, with the largest spike in the first half of 2016

(Lipovsk, Tefanko and Brania, 2017). Nowadays, people rely on mobile devices such as

smart phones and tablets much more than their personal computers and choose to store

critical personal information such as bank account, credit card information and personal

photos in the mobile device. Therefore, it is necessary to have more people working on the

analysis of Android ransomware applications to prevent loss of data and leak of personal

information.

www.manaraa.com

2

Table 1. Smart Device OS Market Share

Period Android iOS Windows Phone Others

2016Q1 83.4% 15.4% 0.8% 0.4%

2016Q2 87.6% 11.7% 0.4% 0.3%

2016Q3 86.8% 12.5% 0.3% 0.4%

2016Q4 81.4% 18.2% 0.2% 0.2%

2017Q1 85.0% 14.7% 0.1% 0.1%

Since the first appearance of Android ransomware in 2012, it has been evolving into

two major types and a lot of families in five years, one of the major types is screen locking,

and the other one is file encryption. This paper is going to analyzing three cases of Android

ransomware, the first two are lock-screen ransomware, which basically locks the device on a

certain page, and ask the victims to pay the ransom for unlocking. The third case is an

Android “WannaCry” ransomware, which encrypts all the media files using AES cipher, and

also charges the victim money for decryption. All of these three ransomwares have been

successfully cracked and tested on Android simulator. After the real-case analysis, we also

concluded some general solution and suggestions to prevent some regular Android

ransomware which reduces the risks of accidentally installing fake applications that carry

ransomware and losing important data.

In section II, we are going to introduce the taxonomy of ransomware application,

including the trend of Android ransomware, the principle of device locking, and the different

unlocking methods that are commonly used. In section III, we will describe three different

ransomware cases, from both static and dynamic aspects, analyzing and showing the specific

solution to each case. In section IV, we are going to do a short discussion about what we

www.manaraa.com

3

observed from the three cases. In section V, we will provide some possible general solutions

about preventions that concluded from others’ work.

In the next section, we are going to present some related research or analysis

performed on both PC and Android ransomware.

www.manaraa.com

4

CHAPTER 2. RELATED WORKS

Android Defender

Android Defender was one of the first ransomware family found on Android device

in mid-2013, which is a classic

fake antivirus (FakeAV) application which is found to be a ransomware. The FakeAV

software is a type of scam using malware that intentionally misrepresents the security status

of a computer and attempts to convince the user to purchase a full version of the software in

order to remediate non- existing infections (Symantec Security Response, 2019). This

application performs a fake virus scan and keeps informing the user that there are threats on

the device, by showing the real name of files in the SD card to make it more believable. The

warning from this ransomware application is endless until the user chooses to pay $40 to

$100 for an activation code to remove “threats”. This ransomware is kind of “soft” locking

the victim’s devices by continuously popping out the warning, which practically makes the

device unusable. According to a full analysis that was performed by Naked Security

(Ducklin, 2019), this ransomware is just simply picking some random virus names to display

on the device by using Math.random() function, even if the device is certainly uninfected

with any virus at all. The activate code is hard-coded and can be easily traced using any

Android decompiler. After activating, we can clean it up by simply removing it.

Simplocker

The Simplocker is the first file-encrypting found on Android in May 2014. This

ransomware was firstly launched in Rus- sia. After installation, a message written in Russian

will be displayed on the screen, a separate thread in the background will start to encrypt files

with regular media extensions such as JPEG, JPG, PDF, DOC, TXT, AVI, and MP4 and so

www.manaraa.com

5

on, as a ransomware, it charges 260 UAH from decryption (Securehoney.net, 2019). Since it

is a early development version of crypto ransomware, it is very easy to crack. According to

the analysis provided by Secure Honey (Securehoney.net, 2019), since the the cipher key is

hard-coded in plaintext, and the decryption function can be found in the same class as the

encryption function if using a good decompiler. It is totally possible to write a separate

decryption program under any IDE.

WannaCry

In May 2017, a PC ransomware WannaCry was spread widely and quickly on

Windows machine all over the world. It makes use of the vulnerabilities in the Windows

Server Message Block (SMB) to rapidly spread by worm (Bobao.360.cn, 2019). This

ransomware encrypts the system files and then demands various Bitcoins payments

equivalent from $300 to $600 for decryption. According to a report provided by 360 Se-

curity Team(Blogs.360.cn, 2019), this WannaCry ransomware encrypts the file system

recursively using a combination of the RSA and AES encryption algorithms, where the RSA

encryption comes directly from the Windows Crypto API, but the AES encryption is

implemented by a third-party and is statically linked within this ransomware, which makes it

impossible to crack the encryption process without knowing the private key. After

encryption, this ransomware fills random bytes to the targeted files with certain extensions,

which are considered as super important files, it then moves these files to a temporary

working directory and deletes them. After this process, the names of metafiles would be

changed, which increase the difficulty to recover for some regular data recovery software.

Due to these restrictions, current solutions cannot ensure to recover all the files, but only

most part of the files depending on the system environment.

www.manaraa.com

6

In the next section, we are going to introduce the categories of Android ransomware,

including technical principles of locking an Android device, and the unlocking techniques

that are commonly used by attackers.

www.manaraa.com

7

CHAPTER 3. TAXONOMY

Types of Android Ransomware

There are two general categories of ransomware on Android: 1) Lock-screen

ransomware, 2) Crypto-ransomware.

In lock-screen types of ransomware, the hijacked resource is access to the

compromised system. In file-encrypting “crypto- ransomware” that hijacked resource is the

user’s files (Lipovsk, Tefanko and Brania, 2017). Both types of the ransomware have been

found on the Windows platform previously, and all of them have been causing trouble to

both individuals and business.

Trend of Android Ransomware

The Android ransomware trend is shown in the Figure 1. We can see the first

ransomware on Android was found since 2012, there was a fake antivirus application called

Fake AVs, which performs a fake scan on the device, and then charge money for removing

threats. In 2014, the new generation Android police ransomware came out, which is also

known as lock-screen ransomware, and it is the primary type of ransomware on the market so

far. In the same year, the first file-encrypting crypto-ransomware appeared as Android

Simplocker. Android ransomware is continuously evolving and forming new families years

after years.

www.manaraa.com

8

Figure 1. Android ransomware chronology

Most of currently existing Android ransomware applications are lock-screen

ransomware because this type of ransomware is relatively easy to implement, possible to

reproduce, and pretty effective. What it can do is to lock the screen, make the device totally

unusable, then charge money for unlocking service. On the other hand, crypto-ransomware is

not so popular until the middle of 2017, right after the burst of WannaCry ransomware on

PC, some ransomwares are found to use the similar strategy to encrypt user’s files, and

charge money for decryption, just like a mobile WannaCry. We cannot conclude the

techniques of crypto-ransomware because there are so different and there are limited

samples, but we are going to analyze one crypto-ransomware case in the Case Studies

section. In the next a few paragraphs, we are going to go over different technology principles

of lock-screen types of ransomware that conclude by (Blogs.360.cn, 2019).

Techniques of Lock-screen Ransomware

Attackers can make use of WindowManager.LayoutParams flags attribute. By

creating a floating window using ad- dView() method, setting the flags attribute of

www.manaraa.com

9

WindowMan- ager.LayoutParams, such as “FLAG FULLSCREEN”, and “FLAG LAYOUT

IN SCREEN”, together with a permission “SYSTEM ALERT WINDOW”, can bring and

lock the float- ing window to top in full screen, which locks the screen and makes the device

not work properly.

Lock-screen can also be realized by monitoring the top activity by TimerTask, if it is

detected is not the lock- screen activity itself, I will restart and set the addFlag to FLAG

ACTIVITY NEW TASK, which can overwrite and kill the process of the original activity,

then the lock-screen activity is locked at the top, and thus hijacked the device. Fortunately,

Android 5.0 or above versions have taken a protective mechanism to prevent this attack.

Another way to lock a screen is to simply shield the home/return button, volume

button, and other virtual buttons by rewriting the onKeyDown method, which results in the

effect of no response upon pressing button, to lock the screen.

If a device has not been set an unlocking password yet, by inducing the user to

activate the Device Manager/root permisson during installation, it can force the device to set

an unlock password without noticing the user, causing the user not able to unlock the device.

if the device has been previously set a password, with the root permission, it can also modify

the /data/system/password.key file to remove or change the password.

Unlocking Techniques

After locking the device, the attackers will charge money for unlocking, there are a

few ways that are commonly used for unlocking.

1. The most straight forward way is to enter the unlock password to unlock, which

means the user redeems the unlock code or password by paying money, and then

enter the code directly in the lock-screen page to unlock the device. This is one of

the most common ways to unlock.

www.manaraa.com

10

2. There are a few cases that use SMS or network to unlock. SMS control unlock,

that is, by receiving the specific SMS number or SMS content to unlock the

device remotely. This unlock method may reveal the attacker’s phone number.

3. For the network unlocking, attackers use anonymous communication technologies

such as Tor browser to remotely control unlocking service in order to hide their

personal information. This anonymous technique was originally designed to

protect the privacy, but now it is abused by a lot of malware.

4. Some attackers even made the unlocking applications for specific ransomware, to

reduce the complexity of unlocking process.

In the next section, we will present case studies of three different Android

ransomware applications. For each of them, we will describe how it affects your device, the

process of cracking it, and an effective solution.

Password Generate Techniques

Among these unlock method, the most common way is to enter a password, so here I

conclude some password generate methods

1. The password can be just hardcoded in plaintext in the code, which will be very easy

to find.

2. The password can be generated with a specific random serial number, which most

likely the attackers will let victims know the serial number and ask to pay the ransom

along with the serial number, so that they will send you back the password that

corresponds to the serial number.

3. The serial number and password can be both generated randomly, with no relations,

but stored as a key-value pair, and this pair may be encrypted and sent to the attackers

through emails or HTTP requests.

www.manaraa.com

11

CHAPTER 4. CASE ANALYSIS

This section is going to perform statistic and dynamic analysis on three currently

existing Android ransomware applications using reverse engineering approach. For statistical

analysis, we will be using a decompiler tool called Jeb (Pnfsoftware.com, 2019), which is a

powerful tool that can converts bytecode to java and extracts all the classes, manifest,

certificate and all the assets files. We also use one graphic tool from Soot (GitHub, 2019),

which is one basic package of a taint-analysis tool Flowdroid (Secure Software Engineering,

2019). Soot is a Java optimization framework, which provides intermediate representations

for analyzing and transforming Java bytecode. to generate control flow graphs for some

functions. For dynamic analysis, we use the Bluestack (Bluestacks - The Best Android

Emulator on PC as Rated by You, 2019) to simulate Android environment. All the

ransomware samples are downloaded from Janus, which is a mobile security platform that

allows users to upload suspicious application and perform security scan to determine if the

application is safe or not. It also keeps updating their database and encourage security experts

and reverse engineer to contribute.

A. SB Modifier

1) Ransomware Description: SB Modifier is an Android game modifier that was

supposed to be a third-party application that allows users to modify the game data. However,

this sample APK was injected malicious resources and repackaged. Fortunately, the

encryption method is relatively easy, so it is a good place to start.

When installing SB Modifier, it will ask the user the administration permission, and

once you allow this permission, your device will restart and gets locked by then. On the lock

screen, you can find a unique serial number (It has been tested that the serial number is

www.manaraa.com

12

unique for a device, and will not change upon restarting the device), an input box which is

extremely hard to find, an OR code for payment, and some contact information. Like other

lock-screen application, all the buttons except the power button has been tampered, so you

can go nowhere.

2) Analysis: Our goal here is to find the password using reverse engineering approach

with the de-compiler tool Jeb. After importing this APK to Jeb, we found there are only a

few ordinary classes such as BuildConfig.java, R.java, a.java, b.java, and c.java, and there is

no malicious or suspicious code founded in this classes after simply scanning through each

class. We then took a close look at these classes and found in class c.java, there is a

suspicious line of code in the private void d() function shows in Figure 2.

Figure 2. void d() function

The author was trying to open a library file “ijm-x86.so” which is located in the Asset

directory. It seems to be normal to utilize functions from the library, however, this could be a

good place to store the malicious code. Therefore, we located this library file and decompile

it again using Jeb, there we found a group of very typical locking-screen virus classes shows

in Figure 3.

www.manaraa.com

13

Figure 3. ijm-x86.so

In the s.java class, we found a void function onCreate() (Figure 4), which generates

the password.

Figure 4. void onCreate()

3) Result: The password generation procedure is relatively easy, the “pass” is found

to be the unique serial number that randomly generated when this application is installed (It

is 79 in our case), the “passw” is the password we are looking for, and it just does a lot of bit

math on the serial number, so we can calculate the unlocking password very easily by

plugging in the serial number.

This ransomware sample is a very typical one, the encryp- tion algorithm pretty easy,

but the actual difficulty of finding the solution is to locate the malicious code.

www.manaraa.com

14

B. Red Wars

1) Ransomware Description: Red Wars is an application that was designed as a plug-

in to some social chatting application such as WeChat, to help user grab Red Pocket (aka

money) as fast as it can. As an external plug-in, these applications like Red Wars are required

to take the root permission because they need to take control of your device to perform some

scripts. Although in the recent Android version, the system will warn you the consequences

you will get if you give the root permission, but people download and install this application

with their own intentions, so it is highly possible that even a user with a little knowledge

could get fooled.

During the process of installation, it asks you a bunch of permission such as root

permission, internet permission, and boot receiver permission, if we accept it, then the device

will restart and enter a lock screen. There are only an input box and a button on the screen

with an anime picture as a background. it looks like a semi-finished product because there is

no payment method or contact information on the screen, but it does not affect our unlocking

process since we are not going to pay them anyway.

2) Analysis: After importing this application to Jeb, besides the package of malicious

classes, we found a separate package that contains a class named “ADRT” (Shows in Figure

5), this is an evidence that this application was developed with AIDE (Android Integrated

Development Environment), which is an IDE that user can development Android application

on an Android device, this environment allows unprofessional people can modify or create

android applications, inject malicious code to a popular and widely used application, or

simply modify an existing ransomware by changing the key value and contact/payment

information to create their own ransomware. This explains why this application looks like a

www.manaraa.com

15

semi-finished product and some code with weird logic which I will introduce in the next a

few paragraphs.

Figure 5. Red Wars classes

In the MyAdmin.java class, we found a CharSequence (Figure 6) function that

contains code to change the password:

Figure 6. CharSequence and onDisableRequested()

First of all, it locks your device when the user requests to disable this application, and

it resets the password with String v7. Lastly, it calls super and lets system to process this

request. There is another function called onPasswordChanged(), which was implemented

very similar as onDisableRequest(), both of them are made to prevent user from unlocking.

What we are interested in is the String v7. The key of that is the function getsss() in

class M.java, getString() in class BAH.java, and the Raw Resource 2131099650.

www.manaraa.com

16

Let’s analyze it from inner to outer. To figure out the Raw Recourse, we need to

check the class R.java. In there, we found an inner class (Figure 7)

Figure 7. class raw

We can see that the raw data 2131099650 we found matches the integer pin. Thanks

to Jeb, we can also explore the resources such as drawable, layout and raw files along with

the Apk. In the raw directory, there are 3 text files as the Figure 8. shows. What we are

interested in is the pin.txt, and indeed it stores pin code: Cj09UWU1bFhl.

Figure 8. pin.txt

The getString() function in BAH.java class is nothing but changing the argument one

character by one character to string, so our next goal is to figure out what getsss() does.

In the M.java class, we found the String type getsss() function shows in Figure 9.

There are a few Chinese characters with no special meanings, they are used as input for

encoding and decoding only.

www.manaraa.com

17

Figure 9. String getsss()

To make it clear and readable, I rewrite the code in Eclipse. In the following

paragraph, I will explain every line with my rewriting and the output I got from Eclipse.

The first line (Figure 10) is taking a string’s byte value as input, and encoding using

Base64 standard.

Figure 10. Base64 Encoding

The output of s1: “Ynk65b285bK46IqxIHFx0jEyNzk1MjU3Mzg”

After that, it takes the sub-sequence from index 3 to 4, and from index 4 to 5 (Figure

11), where the begin index is inclusive and the end index is exclusive. Therefore, it turns out

that it only takes the single character of index 3 and 4 of the string s1.

Figure 11. Taking Sub-sequence

The output: s2 = “6”, s3 = “5”.

The last line is a very long and complex but ridicules string builder. I will separate it

into two parts in my rewriting:

www.manaraa.com

18

The first part (Figure 12) is the inner string buffer, there are two Chinese terms, and I

replace the first term with “aaa”, and the second term with “bbb”. This replacement will not

affect the output of the code as you will see what it actually does.

Figure 12. Personal Encryption Algorithm

This part replaces all the “6” (s2) in the pin with “aaa”, then replace all the “5” (s3) in

the pin with “bbb”, then replace all the “aaa” with “6”, and finally replaces all the “bbb” with

“5”. What it does is just swap all the “5” and “6”, and the hilarious point is that there are no

“5” or “6” in the pin at all. Thus, the output s4 is still the pin, which is “Cj09UWU1bFhl”.

Next, it applies the Base64 decoder of s4 (Figure 13), which makes s5 =

“==Qe5lXe”, then it takes reverse of s5, so s6 = “eXl5eQ==”, and finally, it decodes s6

again, so the final string s7 = “yyyy”, which is the password to unlock the screen.

Figure 13. Base64 Encoding

3) Result: So far, we have successfully cracked this lock screening ransomware. We

can see this kind of ransomware is easy to reproduce, just by simply changing the pin

number, and the non-sense in swapping s2 and s3 indicates this code has been modified and

reproduced. This is a very dangerous trend since people with not enough knowledge about

software engineering can develop their own ransomware easily, and people who are expert

can sell their reproducible ransomware.

C. King of Glory - Beta

1) Ransomware Description: King of Glory is a very famous mobile game in China

operated by Tencent Inc, a large number of popularities through all ages and all genders play

www.manaraa.com

19

this game, there is even e-sports competition holding in a lot of cities. Being such a hot

online mobile game, many third- party add-ons and plug-ins applications have been

developed in Android market, which requests administrator permission to take control of the

device, meanwhile, it leaves the device in danger.

In June of 2017, right after the exposure of WannaCry ransomware in PC, there are a

few King of Glory related Android applications named “King of Glory - Assist” or “King of

Glory - Beta” spreading in Chinese Android market, which carries the mobile version of

WannaCry ransomware. In the following a few paragraphs, I will present the case study of

“King of Glory - Beta”.

Before installation, I stored some photos and Microsoft Word documents in the media

storage. During the installation, it will ask administrator permission as expected. For the first

time opening this application, it will enter a loading screen, and says “First time using,

exporting configuration files...” in Chinese. This process takes quite an amount of time,

depending on the usage of your storage, because it is actually traversing your directories and

performing encryption on your files. When this “configuration” process finishes, it will enter

a classic WannaCry page, with some description written in Chinese, as shown in Figure 14.

www.manaraa.com

20

Figure 14. King of Glory - Beta, WannaCry Page

The Chinese description is just a translation of the original English version

WannaCry, which basically says that some important files of the device such as photos,

pictures, documents, compressed files, music, video files and text files have been encrypted

so that you cannot open it anymore. it tries to convince the victims that the only way to

recover the files is to contact them and pay for the decryption. It has a three-day countdown

to raise the payment, and a seven-day countdown to start deleting the files. There is a pin

code in the bottom left, which is 10602889 in this case, and they asked victims to send them

the pin code along with the payment so that they will provide the decryption key. The

payment can be processed in Alipay, WeChat pay, and QQ pay, which are three major

mobile payment applications in China. The developer left their OR codes for those three

payments, and charges for 20 Chinese dollars for decryption within three days.

Unlike the other lock-screen ransomware, this WannaCry page will not lock the

screen. We can still go back to home screen and run other applications and settings, however,

this application will send out a warning message: “Do not close or uninstall this application,

otherwise, your files may be lost forever”. Therefore, I switched out without closing it and

www.manaraa.com

21

checked the Media Manager, where I stored pictures and documents in, and found all the

files are simply invisible in Bluestacks simulator, I believe this is because the encrypted files

format is unable to view in this Media Manager. Anyway, all the media files are “gone” by

now, so we need to proceed to analyze this WannaCry ransomware.

2) Analysis: First of all, I imported this ransomware APK to decompile every class.

There are only 7 classes (Figure 15) in total, and the naming of the classes is very similar to

the other samples I analyzed in previous sections.

Figure 15. Classes of King of Glory - Beta

Usually, we should check the MainActivity.java class first, but by experience, I went

for the sss.java class, because assuming it comes from the same author, then he or she usually

store the malicious code in this class. As we expected, in the sss.java class, we found

functions such as void delete Dir(), void deleteDirWithFile(), File encryptFile(), and File

decryptFile(). From these delete functions, we found that it not only deletes files from DCIM

(Data Center Infrastructure Management), it also accesses some Cloud drive, for example

Baidu Net Disk, and delete files from it. In the encryption function, it takes files as input, and

www.manaraa.com

22

perform encryption using AES Cipher. In order to solve this ransomware problem, what we

are interested most the decryption function.

The decryption function is very long, and there are a lot of “goto” calls with “labels”.

It might be the author’s intention to use “goto”, because most Java IDE cannot compile it,

and so fewer people can crack his or her decryption method. Or it might be the decompiler

issue, when it gets converted from byte code, which has a lot of “goto” and “jump”, it will

not re-organize to a nice loop with if statements. We can certainly rewrite the encryption

code and run some tests in Eclipse, but the relations between each “goto” and “labels” are

very complex, it will take a long time to re-organize it by hand, and even if we rewrite it, we

cannot ensure the correctness and credibility.

Therefore, in order to see the relations between these “goto” and “labels”, we

installed an open-source decompile tool called “Soot”. One tool of Soot is the CFG Viewer,

which allows taking input as Android Apk, and then it will return the control flow graph of

every function in that Apk. The complete control flow graph of File decryptFile() function is

shown in Figure 16.

www.manaraa.com

23

Figure 16. Control Flow Graph of decryptFile()

www.manaraa.com

24

Now we have the control flow graph of the decryption function, but we still do not

understand the meaning of these randomly named variables and arguments, and how the

parameters are passed. Thus, I started to analyze the parameter of the decryption function

first. As Figure 17 shows, the decryption function takes three String type arguments as

parameters, to find out what are they represent, we need to find where the decryption

function is called.

Figure 17. Part of decryptFile()

In the same class, we found a function void jj() calls decryption function. It also has

three arguments, they are File arg12, String arg13, and Int arg14 respectively, as shows in

Figure 18. From this function, we can see that the jj() function is passing its parameters to

decryptFile(), it converts the File arg12 to String type, and call getsss() on the String arg13.

The getsss() function is just a personal encryption that performs some string modification on

the arguments. The third argument of decryptFile() is a substring of the file name which from

0 to certain length, depending on the variable hzs in the MainActivity.java class.

www.manaraa.com

25

Figure 18. Part of jj()

So far, we knew that the parameters of the decryption function are a String message, a

String filename, and a substring of the filename. Thus, we move to MainActivity.java class to

see how is variable hzs is defined.

In the MainActivity.java class, we found the onCreate() contains the declaration and

initiation of hzs shows in Figure 19. The hzs is the length of variable hz, and hz is a string

that was built very complexly. It is not completely shown in Figure 19 for the string building

of hz, so I will describe specifically here. Firstly, it calls a l() function, which is also a

personal string modifier function, it takes Thai characters and converts it to a Chinese

sentence, which basically says “Do not uninstall this application, contact xxxx for

decryption”. Then append another variable xh. Thus, we need to check how is xh defined.

www.manaraa.com

26

Figure 19. Part of onCreate()

Still in the onCreate() function, xh is defined in an if-else statement. The first

statement checks if xh is already defined in shared preferences, if not, initiate xh as a random

number * 1000000 + 10000000 and convert it to string. So far, we can conclude that hzs is

depending on an random number xh, which does not make sense to perform decryption.

Although we got stuck on tracking a parameter of the decryption function, we found

quite a few interesting variables defined in the MainActivity.java class, especially the

randomly defined variable xh. When I was running some tests in Eclipse of the process of

initializing xh, I found the random output is very similar to the pin code that we got on the

WannaCry page. If xh is the pin, then the if-else statement on generating xh makes much

more sense, because if the application is first- time open, then it will go to “else” and

initialize a new pin, if not, it will check the pin variable which is stored in shared preferences.

www.manaraa.com

27

Assuming xh is the pin code, then we need to find where uses xh besides the hz.

Luckily, just around the initialization of hz and hzs, there is a string variable m defined as xh

* 4 + 3 and converted to string.

Now we know m, again we need to find where uses m. In the MainActivity.java class,

a void run() calls deleteDr(), and one of the parameters of deleteDr() is m. However, this

does not help out, because we do not care how it deletes files. After a global searching of

variable m, we found that in class qq1279525738.java, there is a function void onClick()

checks if the toast text input is equal to m, shows in Figure 20. Although it does not call the

decryption function directly after key match, instead of it, it starts a new thread which

performs the decryption. Also, by reading the messages that it prints after key match, we

know that the decryption process begins.

Figure 20. Part of onClick()

3) Result: Therefore, the key to decrypt is the pin code * 4 + 3. I have tried with the

Bluestacks simulator and it worked, all my media files went back after the decryption. Also,

there is a website (Tencent Games, 2019) that Tencent Inc. provides that let users who

accidentally installed King of Glory ransomware to input the pin code, and they will output

the key to save your device, what they did is just times 4 and plus three.

www.manaraa.com

28

CHAPTER 5. DISCUSSION

Generally speaking, all of the three ransomware cases are disabling users’ devices by

either locking the screen, or encrypting media files, and charging money for the password to

unlock or decrypt. The malicious code may be injected into a popular application, or a

complete fake application only shares the same name and icon with some certain well-

known application to induce users to download and install. An interesting thing is that the

applications that ransomware tries to foreign are different among countries. In the United

States, most ransomware applications are disguised as porn videos, Adobe Flash Player and

some system software updates. Whereas in China, ransomware application can be seen as the

game plug-in, free Wi-Fi, and “like” gathering tools.

The method to unlock for the three cases are all entering a password that “purchased”

from attackers, this is the most straightforward way and the safest way. Moreover, with this

unlocking method, a ransomware developer can sell the pro- gram to attackers who have less

knowledge about Android development, but they can easily modify the ransomware by

changing the pin value, or some input variables that an algorithm used to generate the

password, to make a ransomware reproducible and unique to one attacker. What is worse, the

ransomware developer usually places an advertisement of their ransomware products and

leave their contact information. Since the attackers are spreading the ransomware application

over the internet, which actually advertises their ransomware products for free. Thus, not

only the original attackers buy ransomware from the developer, even some victims became

the attackers after being blackmailed. Therefore, a ransomware development, selling,

spreading has already formed a whole industrial chain.

www.manaraa.com

29

The ransomware industrial chain can be formed because there is a market, not every

Android user is an expert in using Android device and has the knowledge of how the

ransomware works, so there are still quite amount of people paying for unlocking their

device. However, paying is not stopping the attack, but encouraging this ransomware

industry. Thus, we should never pay for unlocking, and there are actually other ways to save

your device if you are accidentally installed an application with ransomware. In the next

section, I am going to conclude some possible general solutions as well as some preventions

from other’s work.

www.manaraa.com

30

CHAPTER 6. GENERAL SOLUTIONS AND PREVENTIONS

Since it is impossible to analyze every Android ransomware application to find the

key for unlocking or decryption, it is necessary to have some general solutions that can

possibly save the device which has already locked. Some general solutions that I concluded

as follows.

General Solutions

The first method and is worth to try is to restart the device and delete the ransomware

application quickly. However, this method depends on the operating environment of the

device, and the implementation of the ransomware, so it only works for a few ransomwares.

Fortunately, Some first aid kits for the mobile device are very powerful right now,

although it takes some memory to run and may be placed with some advertisement, it is still

worth to install because most of them can detect and stop from installing an application with

malware, kill the locking process, and uninstall it automatically.

Entering security mode is also an effective way to remove the ransomware

application. What you need to do is to forcibly shut down the device by holding the power

button, and then restart the device. Then enter the security mode (different brands and

devices may have different ways to enter the security mode, you may need to check the user

manual of the device). Find the ransomware application in the setting page, uninstall it and

then restart.

For users with some technical background, if the device is rooted and the USB

debugging mode is turned on, you can connect the device to a computer and run ADB

command. If the ransomware is setting or tampering the unlocking password, then use rm

/data/system/password.key to remove the password file. For other types of lock-screen

www.manaraa.com

31

ransomware, you can also use rm command to delete the ransomware application installation

path.

Preventions

There are also a lot of ways to prevent some regular ransomware from being installed.

There are a few details you should pay attention to when downloading and install an

unknown application:

First of all, the size of an Android application is an indicator to determine if it

contains ransomware, a typical plain ransomware Apk will not be too large, usually less than

5Mb if it is not injected into a regular application. So, if the size of Apk that you download is

way less than what it is expected, be careful about this Apk. Secondly, the name of an

Android application is also a good clue. Most ransomware applications are disguised as the

game plug-in, free WiFi, and “like” gathering tools. Do not simply trust this kind of

applications. Last but not least, the permissions request that pops out during application

installation is very important. Most ran- somware applications will ask for some sensitive

permissions such as “SYSTEM ALERT WINDOW”, “WAKE LOCK”, “RECEIVE BOOT

COMPLETED” and so on. These are the evidence that the package you are about to install

may have the malicious program within, and in fact, what most security applications do is

trying to analyze permissions and system intent to identify malicious applications (Schmeelk,

2014). Thus, we need to think carefully if the application we are about to install requires

these permissions, if not, do not trust them easily, use some security applications to scan it

before installing it if you really want that application.

Other suggestions can be: Downloading the package from large and trusted sites,

back-up the device regularly, and install security application such as mobile guard.

www.manaraa.com

32

CHAPTER 7. UNPACKING

As the experiments on Android ransomware move further, we found many

ransomware apps are “guarded” or “packed” by some third-party packing services. This issue

increases the difficulty of analyzing ransomware apps significantly, as we have to find a way

to unpack it in order to decompile it and extract the original code. Therefore, it is necessary

to have research on packing, unpacking, as well as the recovery process in order to dive deep

in Android ransomware. In the following sections, we are going to give a brief introduction

of the packing process, a few explanations of principles of three typical unpacking tools, and

also the recovery process.

Introduction to Packing

Code packing was originally designed to protect intellectual property, which is also a

double-edged sword to the security community, as the packers are widely used by Android

malware or ransomware to hide their malicious code. There are a lot of companies that are

providing cloud packing services nowadays, such as Bangcle, Baidu, Alibaba, Qihoo360, etc.

The techniques of packing among these companies are not quite identical, but the main

concept is the same. The general process of packing is illustrated in Figure 21.

Figure 21. Packing Process

Original
Apk

Shell Apk

Encryption
tool

Encrypted
Original

Apk

Merge Dex Packed Apk

www.manaraa.com

33

The three objects that we need in the packing process are 1. The original Apk which

needs to be packed; 2. The shell Apk, which used for decryption; 3. An encryption tool. The

basic process is, first we encrypt the original Apk with the encryption tool, and then merge

with the shell Apk to obtain a new dex file. Finally, we can replace the dex file of the shell

Apk with the new dex file, which makes the shell Apk be a new Apk. The new shell Apk is

called a “packed” Apk, which is responsible for decrypting the original Apk, then

dynamically load the Apk and run as normal. The output of this packing process can be

illustrated in Figure 22:

As our goal is to unpack Apk, and almost every packing process will have its

corresponding unpack Apk within, it will make the unpacking process much easier if we can

understand how does the shell Apk work from each company.

 The general idea of shell Apk is to use java reflection to replace the ‘mClassLoader’

in ‘android.app.ActivityThread’ to the ‘DexClassLoader’ of the original Apk, in this way, it

can guarantee that it will load the original program under the shell Apk environment and

resources. The process of how the shell Apk works can be demonstrated by Figure 23:

Merge Dex

Packed Apk

Encrypted
Original Apk

Shell Apk

Figure 22. Packed Apk

www.manaraa.com

34

Figure 23. Shell Apk Process

The overall procedures of the shell Apk process can be concluded as follows:

1. Obtain the dex file of the shell Apk

2. Find the original Apk from the dex file, and run the decryption process (the

decryption process must be corresponding to the encryption of the packing

process, otherwise it will raise dex loading error)

3. Obtain the dex file from the decrypted original Apk

4. Load the Application of the original Apk according to the metadata of

‘AndroidManifest.xml’

Inspiring by the process of the shell Apk, we can think of two approaches to unpack

an Apk based on the given unpack Apk: 1) Figure out the encryption & decryption method

that each company uses, so we can decrypt the original Apk statistically. 2) Dump the dex

file of the original Apk from memory in runtime. There are pros and cons between these two

approaches, approach one does not require to run the Apk on device or simulator, which

Decryption Original Apk
Obtain

Dex

Load the
Application

Merge Dex

Packed Apk

Encrypted
Original

Apk

Shell Apk

www.manaraa.com

35

prevents devices from being in danger since we are dealing with malicious apps, however, to

understand or rewrite the decryption method is a difficult and time-consuming work, and it is

not a universal way to unpack. On the other hand, approach two is a more general way and

most of the recent unpacking tools use this approach, there will be no worries on the

decryption as it is unpacking dynamically, so the difficulty of this approach is on system

level. First of all, the packed app must be runnable under our system environment, and in

order to dump data from system, we might need to grant root permission on device, for some

tool that I am about to discuss, we may even need to modify the system code and build a new

environment just for unpacking. In the following sections, we will go through three unpack

tools, regarding their principle, pros and cons, and also involving experiments that we have

done.

Case Study: DrizzleDumper

DrizzleDumper is an unpacking tool based on searching dex files by memory

features, developed by (DrizzleRisk, 2017). The pre-requite of this unpacking tool is under

root environment, and the idea is to use ‘ptrace’ to attach the process of the target apk, then

performs a feature search among the memory of the target process, once it finds a matching,

it will dump the dex files from memory.

The essential part of code is as follows, it firstly attaches pid using ptrace, then

perform feature search to find the “magic” memory in that target pid process, and lastly

dump dex files after it found matchings.

1. // Attach process id using ptrace, then perform feature search in the target pid
process, and finally dump dex files if found matchings

2. if(find_magic_memory(clone_pid, mem_file, &memory, dumped_file_name) <= 0)

3. {
4. printf("[*] The magic was Not Found!\n");
5. ptrace(PTRACE_DETACH, clone_pid, NULL, 0);

www.manaraa.com

36

6. close(mem_file);
7. continue;
8. }
9. else
10. {
11. // dex dump successfully, break the loop
12. close(mem_file);
13. ptrace(PTRACE_DETACH, clone_pid, NULL, 0);
14. break;
15. }

Experiment

Environment:

A rooted device or simulator

Installed Android Debug Bridge (adb)

Installed target packed app, make sure it is runnable on device

Steps:

1. Download drizzleDumper from github

2. adb push drizzleDumper to /data/local/tmp of the device or simulator

3. ./drizzleDumper [target_package_name] [wait_time]

4. Open the target app

5. adb pull the dex files under /data/local/tmp

Notes: wait_time is in second, and we can choose different wait_time (normally 1-3

sec) if the dex was not dumped successfully. This is because the appearance time and

lasting time for a dex file are different for different packers.

Results: Apks packed from Qihoo360 can be successfully dumped by this unpacking

tool, packers from other company cannot be dumped or dumped an empty dex file.

Pros & cons

The DrizzleDumper is relatively easy to use and to understand the principle, it does

the unpack job for Qihoo360 packers, even for the latest version. However, the

www.manaraa.com

37

DrizzleDumper only works for Qihoo360, which is definitely not a universal unpacking tool

that we are looking for.

Case Study: Dex2oatHunter

Dex2oatHunter (Spriteviki, 2016) is another unpacking tool that is based on the

source code of Android runtime (ART). It is a modification of Android 4.4 source code

mainly in “art/dex2oat/dex2oat.cc”

In ART environment, most codes are compiled ahead-of-time, it transforms byte code

to native code, which improves the performance of the Android app. The workflow of

compilation is apk à dex à oat, and the idea of Dex2oatHunter is to dump the dex files

from memory in the timing just before the dex2oat process happens, to achieve the

unpacking purpose. As an example of Android 4.4 source code showing below, in

“/art/dex2oat/dex2oat.cc” (line 14). It checks if the dex file has written permission before

calling the dex2oat function, and Dex2oatHunter chooses this timing to dump dex files use a

given file descriptor.

1. for(constauto& dex_file : dex_files) {
2. if(!dex_file->EnableWrite()) {
3. PLOG(ERROR) << "Failed to make .dex file writeable '"<< dex_file->GetLocati

on() << "'\n";
4. }
5. std::stringdex_name = dex_file->GetLocation();
6. LOG(INFO) << "Finding:dex file name-->"<< dex_name;
7. // dump dex files for packer: qihoo360
8. if(dex_name.find("jiagu") != std::string::npos) {
9. LOG(INFO) << "Finding:dex file from qihoo-->"<< dex_name;
10. int len = dex_file->Size();
11. charfilename[256] = {0};
12. sprintf(filename, "%s_%d.dex", dex_name.c_str(), len);
13. int fd = open(filename , O_WRONLY | O_CREAT | O_TRUNC , S_IRWXU);
14. if(fd > 0) {
15. if(write(fd, (char*)dex_file->Begin(), len) <= 0) {
16. LOG(INFO) << "Finding:write target dex file failed-

->"<< filename;
17. }
18. LOG(INFO) << "Finding:write target dex file successfully-

->"<< filename;
19. close(fd);
20. } else {

www.manaraa.com

38

21. LOG(INFO) << "Finding:open target dex file failed-->"<< filename;
22. }
23. }
24. }

Experiment

This tool was abandoned due to it is very time consuming in building source code

(will be talked about in pros & cons), while we wanted to make some modification of the

original code and test it on a real device.

Pros & cons

 Dex2oatHunter supports ART, which is the newer version of Android runtime,

according to the author’s test, it can successfully unpack Qihoo360 and Legu packers due to

the special “timing” of dumping dex files, and ideally may work for more company as it can

define the packer’s package name(line 8). However, the biggest shortage is the time it takes

to build source code, and any changes we made to test, require 5-6 hours to build with

chances of failures. Another fact is it only support ART, but we are looking for a universal

unpacker that should be able to take care of both DVM and ART environment.

 VirtualXposed + FDex2

FDex2 is a relatively new unpacking tool based on VirtualXposed framework, which

is developed by a forum user in 2018. We cannot find an authorized Github, but it is a brand-

new approach of unpacking compares to others, so it is meaningful to talk about its principle,

in respect of VirtualXposed and FDex2 separately.

VirtualXposed:

Xposed is a framework for modules that can change the behavior of Android system

and apps without touching any APKs. However, there are a lot of limitations such as it is

required to unlock the bootloader, and grant root permission of the Android device before

www.manaraa.com

39

using this framework. The VirtualXposed, on the other hand, it is not necessary to have root

permission in order to utilize Xposed. The working principle of VirtualXposed is as the name

of it, to create a “virtual” environment in the device, and launch Xposed in this virtual

environment, and all the apps or modules that we need will be installed in this virtual

environment to make use of Xposed framework. Since it is a virtual environment, any

modules (e.g. FDex2) or apps (apps to be unpacked) that be installed into VirtualExposed

will not affect the Android system.

FDex2:

FDex2 is a small module that can be run in Xposed or VirtualXposed framework. The

idea of this module is, by hooking the loadClass method in ClassLoader, using reflection to

call getDex method to obtain Dex object(com.android.dex.Dex), and then write the dex object

to files. The core code is just a class hook method and is included as follows:

1. public void handleLoadPackage(XC_LoadPackage.LoadPackageParam lpparam) throws Throw
able {

2. xsp = new XSharedPreferences("com.ppma.appinfo", "User");
3. xsp.makeWorldReadable();
4. xsp.reload();
5. initRefect();
6. packagename = xsp.getString("packagename", null);
7. XposedBridge.log("�
��������
����
 �"+packagename);
8. if ((!lpparam.packageName.equals(packagename))||packagename==null) {
9. XposedBridge.log("��
�����
���������
����
�
�������,���,�������
��");
10. return;
11. }
12. XposedBridge.log("����
��������
����
 �"+lpparam.packageName);
13. String str = "java.lang.ClassLoader";
14. String str2 = "loadClass";
15.
16. XposedHelpers.findAndHookMethod(str, lpparam.classLoader, str2, String.clas

s, Boolean.TYPE, new XC_MethodHook() {
17. protected void afterHookedMethod(MethodHookParam param) throws Throwabl

e {
18. super.afterHookedMethod(param);
19. Class cls = (Class) param.getResult();
20. if (cls == null) {
21. XposedBridge.log("cls == null");
22. return;
23. }
24. String name = cls.getName();

www.manaraa.com

40

25. XposedBridge.log("���������
 �" + name);
26. byte[] bArr = (byte[]) Dex_getBytes.invoke(getDex.invoke(cls, new O

bject[0]), new Object[0]);
27. if (bArr == null) {
28. XposedBridge.log("��
�	����
���������
����");
29. return;
30. }
31. XposedBridge.log("��������
�
���");
32. String dex_path = "/data/data/" + packagename + "/" + packagename +

 "_" + bArr.length + ".dex";
33. XposedBridge.log(dex_path);
34. File file = new File(dex_path);
35. if (file.exists()) return;
36. writeByte(bArr, file.getAbsolutePath());
37. }
38. });
39. }

Experiment

Environment:

An Android device or simulator with system version 4.4 or above

VirtualXposed

Steps:

1. Install VirtualExposed, FDex2, and the app to be unpacked on the Android device

2. Open VirtualExposed, install FDex2 module within the VirtualExposed

environment and activate FDex2

3. Install the target app within VirtualExposed

4. Run FDex2 in VirtualExposed, setup the target app to hook its package name

5. Run the target app in VirtualExposed

6. The unpacked dex files will be located in

/data/user/0/iv.va.exposed/virtual/user/0/{packagename}

Notes: If the device is rooted, we can retrieve dex files using adb pull, if it is not

rooted, then we can use the VirtualXposed built-in File Manager to share files to PC.

www.manaraa.com

41

Results: Apps that packed by Qihoo360, Baidu, Bangcle are unpacked successfully,

apps packed from packers such as Legu, Ijiami cannot be unpacked or output empty

dex files.

Pros & cons

 The good things about using VirtualExposed and FDex2 are, it can unpack from more

packers since it directly hooks the getDex method instead of reading dex files from memory,

as a lot of packers start to protect the memory during unpacking stage. In addition, because of

the framework + module idea, we do not need to compile system, or root device, and if we

want to modify or update the module for the latest Android version, we can just make the

modifications on the module and packed as an Apk to test, which makes this method

extendible. Overall, I believe this is a good approach to dive deep in unpacking in the future.

www.manaraa.com

42

CHAPTER 8. RECOVERY

In order to verify the unpacked code is identical to the original code, and to support

some dynamic experiments that our security group currently running, it is necessary to find a

way to recover the unpacked dex files to a runnable Apk. Therefore, this chapter is going to

introduce a working method that we have tried to perform a recovery (repack).

In the following a few sections, we are going to conclude the general approach of

recover an unpacked android app, and a practical experiment that successfully recovered an

app that was packed by Qihoo360 and then unpacked by FDex2.

General Steps

1. Obtain dex files

The first step is to unpack the original packed Apk with one of the unpacking

tools that was introduced in the previous chapters and obtain the dex files as the

output. We have to be careful about the output dex files as there might be

irrelevant or useless dex files depending on different unpacking tools, a good

approach to check is to search the dex files content by keywords such as the

package name.

2. Replace dex files

Assume you are confident with the dex files, then the next step is to replace the

dex files in the original packed Apk with the dex files that we obtained from the

last step, and make sure the dex files are renamed identical to the original ones.

3. Modify AndroidManifest.xml

Since the new dex file that we obtained is the one with the shell application code

removed, in order to make it work as normal, we have to revise the

www.manaraa.com

43

AndroidnManifest.xml file such as replacing the application entry point name

with the original Apk package name (not the packed package name), and remove

some modules or attributes that are apparently used for shell application. This step

requires users to have some knowledge of Android development, otherwise, it is

difficult to tell which modules to keep or delete.

4. Repack and sign the Apk

There are a lot of tools such as Android Studio and Apktool to sign and pack the

Apk, after it is packed successfully, it is ready for installing and testing.

5. Test and debug

If the recovered app is working perfectly after the last step, then this step can be

skipped. If unfortunately, the recovered crashed in runtime, it is necessary to

debug and repair the app. Most likely, the app is crashed due to some code of

shell Apk has been deleted but the main activity is still calling some classes,

functions or variables of shell Apk. Therefore, the best approach is to set

breakpoints and go over the code in runtime to find out which line of code is

causing problems.

Experiment

A useful tool that we found is an Android app named “MT Manager” (MT Manager,

2019), it is a powerful file manager in Android platform, with this app, we can move files,

rename files, searching keywords in files, we can even decompile dex files, make some

modifications and then compile it back, and even sign an Apk. With the help of this tool, we

www.manaraa.com

44

are able to do the recovery within an Android device. In the next a few sections, we will

show the experiment steps and details.

Environment:

The experiment is running on an Android emulator (Nox emulator) with MT Manager

installed, a packed app (we used a simple log app that we need to perform other dynamic

experiments) packed with Qihoo360, and dex files that are unpacked by FDex2 (the last

approach of Chapter 7).

Steps:

1. Launch MT Manager

2. Move dex files to /mnt/shared/Other/

3. Search each dex file by the target package name until finding the right dex file

4. Rename the found dex file to “classes.dex”

5. Open the original packed Apk and view contents

6. Replace the “classes.dex” in original packed Apk with the one we renamed

7. Open “AndroidManifest.xml” with decompiler

a. Replace the <application … name = “{package_name}”/>

b. Remove <meta-data … /> block

c. Compile

8. Sign the Apk by going to function -> Apk sign

9. Install the signed Apk and run it

Evaluation:

 First of all, the recovered and the signed app is running successfully as the original

one. Now we have got two Apks, the original, and the packed then unpacked and recovered

www.manaraa.com

45

one. In order to verify the identity, we performed a comparison between these two Apks.

After decompiling these two Apks using JEB, we found the classes of these are the same, no

added or resected classed found due to packing or unpacking. Furthermore, we performed a

line-by-line code comparison using “file diff”, and the result shows that all the code files

between two Apks are identical.

Conclusion

Overall, this recovery approach is successful and could be applied to our team’s other

security experiment’s workflow if it involves a packed app. Also, this approach completes

the entire unpacking process, from a packed app to a complete unpacked and re-signed app

that is runnable, which is a great step forward for our future Android security research.

www.manaraa.com

46

CHAPTER 9. SUMMARY AND FUTURE WORK

In this paper, three typical Android ransomware applications are analyzed and got

resolved using reverse engineering approach and both statistic and dynamic methods.

Although we cannot crack all the ransomware spreading in the Android market, it is time to

stand out and fight back. We hope my work can improve the Android market environment a

little bit, and we encourage everyone to refuse to pay any money for unlocking or decryption.

Only in this way, the ransomware packaging business can be stopped.

In addition to ransomware, we have performed a few experiments on the Android

unpacking process, with principles, experiments steps explained in detail, and also discussed

the pros and cons for each unpacker we tested. We also included recovery in the unpacking

process to best support our team’s other security experiments. As a result, some of the tools

that we have tested could be applied to our other researches workflow.

In the future, we are going to analyze more complex Android ransomware, for those

using remote unlocking, and SMS control unlocking. We are also planning to implement a

detection application that can identify the latest ransomware applications.

www.manaraa.com

47

REFERENCES

Blogs.360.cn. (2019). Android Ransomware Research Report. [online] Available at:
http://blogs.360.cn/360mobile/2016/04/12/analysis of mobile ransomware/ [Accessed 15
Feb. 2019].

Bluestacks - The Best Android Emulator on PC as Rated by You. (2019). BlueStacks - Play
Mobile Games on PC 6x Faster Than Any Phone. [online] Available at:
https://www.bluestacks.com [Accessed 15 Feb. 2019].

Bobao.360.cn. (2019). Analysis on the Recovery Possibility from WanaCrypt0r. [online]
Available at:
http://bobao.360.cn/learning/detail/3874.html?fromsinglemessage&isappinstalled0
[Accessed 15 Feb. 2019].

Ducklin, P. (2019). Android malware in pictures – a blow-by-blow account of mobile
scareware. [online] Naked Security. Available at:
https://nakedsecurity.sophos.com/2013/05/31/android-malware-in-pictures-a-blow-by-
blow-account-of-mobile-scareware/ [Accessed 15 Feb. 2019].

DrizzleRisk. (2017, April 12). DrizzleRisk/drizzleDumper. Retrieved from
https://github.com/DrizzleRisk/drizzleDumper

En.wikipedia.org. (2019). Mobile security. [online] Available at:

https://en.wikipedia.org/wiki/Mobile security#Ransomware [Accessed 15 Feb. 2019].

GitHub. (2019). Sable/soot. [online] Available at: https://github.com/Sable/soot [Accessed 15
Feb. 2019].

IDC: The premier global market intelligence company. (2019). IDC - Smartphone Market
Share - OS. [online] Available at: https://www.idc.com/promo/smartphone-market-
share/os [Accessed 15 Feb. 2019].

Lipovsk, R., Tefanko, L. and Brania, G. (2017). Trends in Android Ransomware. ESET.

Lookout.com. (2019). Lookout | The Leader in securing the Post-Perimeter World. [online]
Available at: https://www.lookout.com/resources/reports/mobile-threat-report [Accessed
15 Feb. 2019].

MT Manager (2019) - Apps on Google Play. Retrieved from
https://play.google.com/store/apps/details?id=bin.mt.plus&hl=en_US

Pnfsoftware.com. (2019). JEB Decompiler by PNF Software. [online] Available at:
https://www.pnfsoftware.com [Accessed 15 Feb. 2019].

Schmeelk, S. (2014). Static Analysis Techniques Used in Android Application Security
Analysis.

Secure Software Engineering. (2019). FlowDroid Taint Analysis. [online] Available at:
http://sseblog.ec-spride.de/tools/flowdroid/ [Accessed 15 Feb. 2019].

www.manaraa.com

48

Secure Software Engineering. (2019). FlowDroid Taint Analysis. [online] Available at:
http://sseblog.ec-spride.de/tools/flowdroid/ [Accessed 15 Feb. 2019].

Securehoney.net. (2019). Creating An Antidote For Android Simplelocker Ransomware |
SSH honeypot written in C. [online] Available at: http://securehoney.net/blog/creating-
an-antidote-for-android-simplelocker-ransomware.html#.Wi2oeraZMnU [Accessed 15
Feb. 2019].

Securehoney.net. (2019). How To Dissect Android Simplelocker Ransomware — SSH
honeypot written in C. [online] Available at: http://securehoney.net/blog/how-to-dissect-
android-simplelocker- ransomware.html#.Wi2nvraZMnU [Accessed 15 Feb. 2019].

Secureworks.com. (2019). WCry (WannaCry) Ransomware Analysis. [online] Available at:
https://www.secureworks.com/research/wcry-ransomware-analysis [Accessed 15 Feb.
2019].

Song, S., Kim, B. and Lee, S. (2016). The Effective Ransomware Prevention Technique
Using Process Monitoring on Android Platform. Mobile Information Systems, 2016,
pp.1-9.

Spriteviki. (2016, June 4). spriteviki/Dex2oatHunter. Retrieved from
https://github.com/spriteviki/Dex2oatHunter

Symantec Security Response. (2019). FakeAV holds Android Phones for Ransom. [online]
Available at: https://www.symantec.com/connect/blogs/fakeav-holds-android-phones-
ransom [Accessed 15 Feb. 2019].

Tencent Games. (2019). Ransomware: King of Glory - Beta Announcement (Solution
included). [online] Available at: https://wx.gamesafe.qq.com/temporary_virus [Accessed
15 Feb. 2019].

Yang, T. (2015). Automated Detection and Analysis for An- droid Ransomware. 2015 IEEE
17th International Conference on High Performance Computing and Communication

	Android ransomware trends and case studies: A reverse engineering approach
	Recommended Citation

	Microsoft Word - Thesis Paper - Revised2.docx

